(Ⅰ)由k=e得:f(x)=ex-ex,
∴f′(x)=ex-e,
由f′(x)=ex-e>0得x>1,
由f′(x)=ex-e<0得x<1;
∴f(x)的单调增区间为:(1,+∞),
f(x)的单调减区间为:(-∞,1);
(Ⅱ)∵f(|x|)=e|e|-k|x|,而f(|-x|)=f(|x|),
∴f(|x|)为偶函数,
∴若k>0,对于任意 x∈R,f(|x|)>0恒成立,等价于f(x)>0对x≥0恒成立,
而f′(x)=ex-k,
①当k∈(0,1]时,f′(x)=ex-k>1-k≥0(x>0),
此时f(x)在[0,+∞)上单调递增,
故f(x)≥f(0)=1>0,符合题意.
②当k∈(1,+∞)时,由f′(x)=ex-k=0,解得:x=lnk,
∴在(0,lnk)上,f(x)单调递减,在(lnk,+∞)上,f(x)单调递增,
∴f(x)min=f(lnk)=k-klnk,
由题意得:k-klnk>0,∵k>1,∴解得:1<k<e;
由①②得:0<k<e.